Exploring MDE. To explore a different substance…

Names:
MDE
EVE
MDEA
N-Ethyl-MDA
EA-1304
N-Ethyl-3,4-methylenedioxyamphetamine
3,4-Methylenedioxy-N-ethylamphetamine
IUPAC names:
1-(2H-1,3-Benzodioxol-5-yl)-N-ethylpropan-2-amine
1-(1,3-Benzodioxol-5-yl)-N-ethylpropan-2-amine
106 · C12H17NO2 · 207.269
InChI=1S/C12H17NO2/c1-3-13-9(2)6-10-4-5-11-12(7-10)15-8-14-11/h4-5,7,9,13H,3,6,8H2,1-2H3
PVXVWWANJIWJOO-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. https://doi.org/10.1002/jps.2600690220

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. https://doi.org/10.1520/JFS12874J

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. https://doi.org/10.1016/0014-2999(87)90173-7

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. https://doi.org/10.1016/j.forsciint.2004.06.016

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB.

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 53–58. 714 kB. https://doi.org/10.1016/0014-2999(91)90664-C

Al-Hossaini, AM. GC-MS and GC-IRD studies on ethoxyphenethylamines related to MDEA, MDMMA and MBDB. Ph. D. Thesis, Auburn University, Auburn, AL, USA, 18 Dec 2009. 1.2 MB.

Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. https://doi.org/10.1111/j.1360-0443.2010.02948.x

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. https://doi.org/10.1016/S0304-3940(02)00823-6

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. https://doi.org/10.1016/0091-3057(88)90001-9

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Nieddu, M; Burrai, L; Pirisi, MA; Carta, A; Briguglio, I; Dessi, G; Boatto, G. Validated liquid chromatography-mass spectrometry method for the quantitation of N-substituted derivatives of 3,4-methylenedioxyamphetamine in rat urine. Forensic Toxicol., 1 Jul 2013, 31 (2), 204–211. 527 kB. https://doi.org/10.1007/s11419-013-0178-5

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Thigpen, AL; Awad, T; DeRuiter, J; Clark, CR. GC-MS studies on the regioisomeric methoxy-methyl-phenethylamines related to MDEA, MDMMA, and MBDB. J. Chromatogr. Sci., 1 Nov 2008, 46 (10), 900–206. 448 kB. https://doi.org/10.1093/chromsci/46.10.900

Thigpen, AL; DeRuiter, J; Clark, CR. GC-MS studies on the regioisomeric 2,3- and 3,4-methylenedioxyphenethylamines related to MDEA, MDMMA, and MBDB. J. Chromatogr. Sci., 1 May 2007, 45 (5), 229–235. 332 kB. https://doi.org/10.1093/chromsci/45.5.229

Freudenmann, RW; Spitzer, M. Neuropsychopharmacology and toxicology of 3,4-methylenedioxy-N-ethyl-amphetamine (MDEA). CNS Drug Rev., 1 Jun 2004, 10 (2), 89–216. 187 kB. https://doi.org/10.1111/j.1527-3458.2004.tb00007.x

Noggle, FT; DeRuiter, J; Coker, ST; Clark, CR. Synthesis, identification, and acute toxicity of some N-alkyl derivatives of 3,4-methylenedioxyamphetamine. J. Assoc. Off. Anal. Chem., 1987, 70 (6), 981–986. 1.8 MB.

Gouzoulis-Mayfrank, E; Hermle, L. Are the “entactogens” a distinct psychoactive substance class? In Heffter Review; Nichols, DE, Ed., Heffter Research Institute, Santa Fe, NM, 1998; Vol. 1, pp 46–51. 44 kB.

Gouzoulis-Mayfrank, E. Differential actions of an entactogen compared to a stimulant and a hallucinogen in healthy humans. In Heffter Review; Nichols, DE, Ed., Heffter Research Institute, Santa Fe, NM, 2001; Vol. 2, pp 64–72. 261 kB.

Hermle, L; Fünfgeld, M; Oepen, G; Botsch, H; Borchardt, D; Gouzoulis, E; Fehrenbach, RA; Spitzer, M. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: Experimental psychosis as a tool for psychiatric research. Biol. Psychiat., 1 Dec 1992, 32 (11), 976–991. 1.6 MB. https://doi.org/10.1016/0006-3223(92)90059-9

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 31 Aug 2017, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292

Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, , 50, 63-82. 627 kB. Retrieved from http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf

Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB. #8.2-6 MDEA

Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #51

Dal Cason, TA; Meyers, JA; Lankin, DC. Proton and carbon-13 NMR assignments of 3,4-methylenedioxyamphetamine (MDA) and some analogues of MDA. Forensic Sci. Int., 18 Apr 1997, 86 (1–2), 15-24. 931 kB. https://doi.org/10.1016/S0379-0738(97)02102-6

Burns, DT; Lewis, RJ; Stevenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim. Acta., 10 Mar 1997, 339 (3), 259-263. 405 kB. https://doi.org/10.1016/S0003-2670(96)00485-0

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Shulgin, AT. Basic Pharmacology and Effects. In Hallucinogens. A Forensic Drug Handbook; Laing, R; Siegel, JA, Eds., Academic Press, London, 2003; pp 67–137. 6.3 MB.

Nichols, DE. Medicinal chemistry and structure-activity relationships. In Amphetamine and its Analogs; Cho, AK; Segal, DS, Eds., Academic Press, San Diego, CA, 1994; pp 3–41. 6.9 MB. #16

Nichols, DE; Oberlender, R. Structure-activity relationships of MDMA-like substances. In Pharmacology and Toxicology of Amphetamine and Related Designer Drugs. NIDA Research Monograph 94; Asghar, K; De Souza, E, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1989; pp 12–40. 282 kB.

Shulgin, AT. Hallucinogens. In Burger’s Medicinal Chemistry, 4th ed., Part III; Wolff, ME, Ed., Wiley & Co., 1981; pp 1109–1137. 4.7 MB. #23b

Simmler, LD; Liechti, ME. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. In Handbook of Experimental Pharmacology; , Springer Berlin Heidelberg, 1 Jan 2018; . 298 kB. https://doi.org/10.1007/164_2018_113

DMCPA
MADAM-6
MDDM
MDMC
MDMP
METHYL-J · MBDB
F
IDA
α-Pr-MDPEA
2C-G-2
MADAM-2
2C-VI
DOMAI · DOM-AI
4-MeO-3-Me-MCAT
5,8-ADT
MeO-B · 4-Methoxybuphedrone
DMA-2-hemiFLY
4-Propoxycathinone
α-Me-N-Pr-MDBA
α,α,N,N-TMMDBA
HMDMA
α-Me-N-iPr-MDBA
BO3A
Hordenine acetate
2,3-MDDMA
2,3-MDE
2,3-MBDB
MAPEA
N-Me-N-Et-MDPEA
N-Pr-MDPEA
N-iPr-MDPEA
α-Et-α-Me-MDPEA
α-iPr-MDPEA
ED-N-DMPEA
2,5-DMA-hemiFly-5 · SF
G-1
M-7
N-Et-ADTN
DMMH-4 · Salsolidine
DMHM-4
2280
1095
1084
1006
10595
736
DV
TMDA
10183
10077
Mexedrone
3-MeO-PM
N-Methoxymephedrone
12190
MOMMC
Ethedrone
Dimethedrone
β-homo-MDMA
21 August 2018 · Creative Commons BY-NC-SA ·