Exploring MDA. To explore a different substance…

PiHKAL#100 MDA; SI#77 MDA
Names:
MDA · EA-1298 · Amphedoxamine · 3,4-Methylenedioxyamphetamine
IUPAC names:
1-(2H-1,3-Benzodioxol-5-yl)propan-2-amine
1-(1,3-Benzodioxol-5-yl)propan-2-amine
ID: 100 · Formula: C10H13NO2 · Molecular weight: 179.216
InChI: InChI=1S/C10H13NO2/c1-7(11)4-8-2-3-9-10(5-8)13-6-12-9/h2-3,5,7H,4,6,11H2,1H3

Baggott, MJ; Siegrist, JD; Galloway, GP; Robertson, LC; Coyle, JR; Mendelson, JE. Investigating the mechanisms of hallucinogen-induced visions using 3,4-methylenedioxyamphetamine (MDA): A randomized controlled trial in humans. PLOS ONE, 2 Dec 2010, 5 (12). 1435 kB. http://dx.doi.org/10.1371/journal.pone.0014074

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. http://dx.doi.org/10.1371/journal.pone.0009019

Naranjo, C; Shulgin, AT; Sargent, T. Evaluation of 3,4-methylenedioxyamphetamine (MDA) as an adjunct to psychotherapy. Med. Pharmacol. Exp., 1 Jan 1967, 17 (4), 359–364. 694 kB. http://dx.doi.org/10.1159/000137100

Roman, DL; Saldaña, SN; Nichols, DE; Carroll, FI; Barker, EL. Distinct molecular recognition of psychostimulants by human and Drosophila serotonin transporters. J. Pharmacol. Exp. Ther., 1 Jan 2004, 308 (2), 679–687. 519 kB. http://dx.doi.org/10.1124/jpet.103.057836

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1767 kB. http://dx.doi.org/10.1111/j.2042-7158.1985.tb03072.x

Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. http://dx.doi.org/10.1111/j.1360-0443.2010.02948.x

Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5581 kB. http://dx.doi.org/10.1093/jat/6.2.71

Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. http://dx.doi.org/10.1080/02791072.2001.10400568

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10675 kB. http://dx.doi.org/10.1080/02791072.1986.10472362

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. http://dx.doi.org/10.1039/b200607c

Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. http://dx.doi.org/10.1038/221537a0

Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 Jan 1982, 25 (5), 530–535. 804 kB. http://dx.doi.org/10.1021/jm00347a010

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2235 kB. http://dx.doi.org/10.1520/JFS12874J

Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 982 kB. http://dx.doi.org/10.2478/s11532-008-0054-z

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10616 kB.

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Vohlken, BA; Layton, SM. Instrumental separation of 3,4-methylenedioxyamphetamine (MDA) from 1-(3,4- methylenedioxyphenyl)-2-propanol, a co-eluting compound. Microgram J., 1 Jan 2003, 1 (1–2), 32–36. 208 kB.

Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1876 kB.

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1 Jan 1970; pp 21–41. 8647 kB.

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1 Jan 1978; pp 8–15. 457 kB.

Shulgin, AT; Sargent, T; Naranjo, C. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. In Ethnopharmacologic Search for Psychoactive Drugs; Efron, DH; Holmstedt, B; Kline, NS, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 28 Jan 1967; pp 202–215. 951 kB.

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1504 kB.

Thiessen, PN; Cook, DA. The properties of 3,4-methylenedioxyamphetamine (MDA). I. A review of the literature. Clin. Toxicol., 1973, 6 (1), 45–52. 367 kB. http://dx.doi.org/10.3109/15563657308991042

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy andor methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. http://dx.doi.org/10.1021/jm00295a007

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. http://dx.doi.org/10.1021/jm00177a017

Glennon, RA; Young, R. MDA: A psychoactive agent with dual stimulus effects. Life Sci., 23 Jan 1984, 34 (4), 379–383. 283 kB. http://dx.doi.org/10.1016/0024-3205(84)90627-1

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 53–58. 714 kB. http://dx.doi.org/10.1016/0014-2999(91)90664-C

Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 9–16. 1107 kB. http://dx.doi.org/10.1016/0014-2999(91)90659-E

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. http://dx.doi.org/10.1016/0014-2999(87)90173-7

Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. http://dx.doi.org/10.1016/0014-2999(86)90615-1

Glennon, RA; Young, R. MDA: An agent that produces stimulus effects similar to those of 3,4-DMA, LSD and cocaine. Eur. J. Pharmacol., 23 Mar 1984, 99 (2–3), 249–250. 139 kB. http://dx.doi.org/10.1016/0014-2999(84)90250-4

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. http://dx.doi.org/10.1016/0014-2999(81)90106-0

Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. http://dx.doi.org/10.1007/BF03033455

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1 Jan 1978; Vol. 11, pp 243–333. 2584 kB. http://dx.doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. http://dx.doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and Its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. http://dx.doi.org/10.1002/cbdv.200690035

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 13 Dec 2011. 1038 kB. http://dx.doi.org/10.1002/dta.413

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. http://dx.doi.org/10.1016/0027-5107(77)90210-X

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. http://dx.doi.org/10.1016/0091-3057(88)90001-9

Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Jan 1986, 29 (10), 2009–2015. 1024 kB. http://dx.doi.org/10.1021/jm00160a035

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. http://dx.doi.org/10.1021/jm00144a009

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1054 kB. http://dx.doi.org/10.1021/jm00082a014

de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. http://dx.doi.org/10.1016/j.tips.2004.08.001

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. http://dx.doi.org/10.1016/j.forsciint.2011.11.003

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. http://dx.doi.org/10.1016/j.forsciint.2004.06.016

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. http://dx.doi.org/10.1016/j.bmc.2003.10.027

Nichols, DE; Oberlender, R; Burris, K; Hoffman, AJ; Johnson, MP. Studies of dioxole ring substituted 3,4-methylenedioxyamphetamine (MDA) analogues. Pharmacol. Biochem. Behav., 1 Jan 1989, 34 (3), 571–576. 680 kB. http://dx.doi.org/10.1016/0091-3057(89)90560-1

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. http://dx.doi.org/10.1002/jps.2600690220

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. http://dx.doi.org/10.1016/0091-3057(91)90005-M

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. http://dx.doi.org/10.1016/S0006-2952(97)00405-X

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. http://dx.doi.org/10.1016/S0968-0896(03)00437-1

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. http://dx.doi.org/10.1016/S0304-3940(02)00823-6

FLEA
PiHKAL#81 FLEA
MDAL
PiHKAL#101 MDAL
MDBU
PiHKAL#102 MDBU
MDBZ
PiHKAL#103 MDBZ
MDCPM
PiHKAL#104 MDCPM
MDDM
PiHKAL#105 MDDM; SI#80 MDDMA
MDE
PiHKAL#106 MDE; SI#81 MDE
MDHOET
PiHKAL#107 MDHOET
MDIP
PiHKAL#108 MDIP
MDMA
PiHKAL#109 MDMA; SI#82 MDMA
MDMEO
PiHKAL#111 MDMEO
MDMEOET
PiHKAL#112 MDMEOET
MDOH
PiHKAL#114 MDOH; SI#84 MDOH
MDPL
PiHKAL#117 MDPL
MDPR
PiHKAL#118 MDPR; SI#86 MDPR
MDIB
MDIB; 3,4-Methylenedioxy-N-isobutylamphetamine
MDTB
MDTB; 3,4-Methylenedioxy-N-tert-butylamphetamine
MDAM
MDAM; 3,4-Methylenedioxy-N-n-amylamphetamine
MDHE
MDHE; 3,4-Methylenedioxy-N-n-hexylamphetamine
MDOC
MDOC; 3,4-Methylenedioxy-N-n-octylamphetamine
MDDEA · MDDE
MDDEA; 3,4-Methylenedioxy-N,N-diethylamphetamine
MDCM
MDCM; 3,4-Methylenedioxy-N-cyanomethylamphetamine
MDBA
MDBA; 3,4-Methylenedioxy-N-tert-butylaminoamphetamine
MDTFEA
MDTFEA; 3,4-Methylenedixoy-N-(2,2,2-trifluoroethyl)amphetamine
MDMEA
MDMEA; 1-(1,3-Benzodioxol-5-yl)-N-ethyl-N-methylpropan-2-amine
MDMPA
MDMPA; N-[1-(1,3-Benzodioxol-5-yl)propan-2-yl]-N-methylpropan-1-amine
MDMIPA
MDMIPA; 1-(1,3-Benzodioxol-5-yl)-N-methyl-N-(propan-2-yl)propan-2-amine
MDSB
MDSB; N-[1-(1,3-Benzodioxol-5-yl)propan-2-yl]butan-2-amine
N-Formyl-MDMA
N-Formyl-MDMA; N-[1-(1,3-Benzodioxol-5-yl)propan-2-yl]-N-methylformamide
J
PiHKAL#94 J; SI#9 BDB
MDPEA
PiHKAL#115 MDPEA; SI#85 MDPEA
MDPH
PiHKAL#116 MDPH
K
K; 2-Amino-1-(3,4-methylenedioxyphenyl)pentane
L
L; 2-Amino-1-(3,4-methylenedioxyphenyl)hexane
α-Et-MDA
α-Et-MDA; 1-(1,3-Benzodioxol-5-yl)-2-methylbutan-2-amine
α-iPr-MDPEA
α-iPr-MDPEA; 1-(1,3-Benzodioxol-5-yl)-3-methylbutan-2-amine
10797
3-Methyl-3-phenylbutan-2-amine
10741
3-Methyl-3-phenylbutan-2-amine
10606
1-(4-Bromophenyl)-1,1-difluoropropan-2-amine
10605
1,1-Difluoro-1-(4-fluorophenyl)propan-2-amine
10477
N-[2-(2-Chlorophenyl)ethyl]acetamide
10183
3-(2H-1,3-Benzodioxol-5-yl)-3-methylbutan-2-amine
β-HO-MDA
β-HO-MDA; 2-Amino-1-(1,3-benzodioxol-5-yl)propan-1-ol
10060
4-(2-Amino-2-methylpropyl)-N,N,3-trimethylaniline
α-Ethylamphetamine
α-Ethylamphetamine
10579
1-(4-Iodophenyl)-2-methylpropan-2-amine
10568
3-[(4-Fluorophenyl)methyl]-N-methylpentan-3-amine
10567
3-[(4-Fluorophenyl)methyl]pentan-3-amine
10566
1-(4-Fluorophenyl)-N,2-dimethylpropan-2-amine
10565
1-(4-Fluorophenyl)-2-methylpropan-2-amine
α-Methyltyrosine
α-Methyltyrosine
10515
N-Ethyl-2-methyl-1-[3-(trifluoromethyl)phenyl]propan-2-amine
10502
3-[(3-Fluorophenyl)methyl]-N-methylpentan-3-amine
10501
3-[(3-Fluorophenyl)methyl]pentan-3-amine
10500
1-(3-Fluorophenyl)-N,2-dimethylpropan-2-amine
10499
1-(3-Fluorophenyl)-2-methylpropan-2-amine
739
Ethyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoate
10055
4-(2-Amino-2-methylpropyl)-3-chloro-N,N-dimethylaniline
MMDA-3a
PiHKAL#134 MMDA-3a; SI#99 MMDA-3a
2T-MMDA-3a
PiHKAL#166 2T-MMDA-3a
2-Me-MDA · 2-Methyl-MDA
2-Me-MDA; 2-Methyl-3,4-methylenedioxyamphetamine
2F-MDA
2F-MDA; 1-(4-Fluoro-1,3-benzodioxol-5-yl)propan-2-amine
3,4-DMA
PiHKAL#55 3,4-DMA; SI#38 DMA
7-Me-MDA · EDA
7-Me-MDA; 1-(2-Methyl-1,3-benzodioxol-5-yl)propan-2-amine
IDA
IDA; 3,4-Isopropylidenedioxyamphetamine
5-APDI
5-APDI; Indanylaminopropane
F2-MDA
F2-MDA; Difluoro-MDA
BF6AP · 6-APDB
BF6AP; 1-(2,3-Dihydro-1-benzofuran-6-yl)propan-2-amine
BF5AP · 5-APDB
BF5AP; 5-(2-Aminopropyl)-2,3-dihydrobenzofuran
NAP · Naphthylaminopropane
NAP; Naphthylaminopropane
6-APT
6-APT; Tetralinylaminopropane
6-APB
6-APB; 6-(2-Aminopropyl)benzofuran
5-APB
5-APB; 5-(2-Aminopropyl)benzofuran
5-API · 5-IT
5-API; 5-(2-Aminopropyl)indole
DHA
DHA; 4-(2-Aminopropyl)benzene-1,2-diol
IBF5AP
IBF5AP; 1-(1,3-Dihydro-2-benzofuran-5-yl)propan-2-amine
EDA
EDA; 3,4-Ethylidenedioxyamphetamine
6-MeO-NAP
6-MeO-NAP; 1-(6-Methoxynaphthalen-2-yl)propan-2-amine
6-EtO-NAP
6-EtO-NAP; 1-(6-Ethoxynaphthalen-2-yl)propan-2-amine
6-PrO-NAP
6-PrO-NAP; 1-(6-Propoxynaphthalen-2-yl)propan-2-amine
6-BuO-NAP
6-BuO-NAP; 1-(6-Butoxynaphthalen-2-yl)propan-2-amine
6-BnO-NAP
6-BnO-NAP; 1-[6-(Benzyloxy)naphthalen-2-yl]propan-2-amine
6-MeS-NAP
6-MeS-NAP; 1-[6-(Methylsulfanyl)naphthalen-2-yl]propan-2-amine
6-IT
6-IT; 1-(1H-Indol-6-yl)propan-2-amine
homo-MDPEA · GAMMA
homo-MDPEA; 1-Amino-3-(3,4-methylenedioxyphenyl)propane
Safrole
Safrole
α-Isosafrole
α-Isosafrole
β-Isosafrole
β-Isosafrole
ONE · MDC
ONE; 3,4-Methylenedioxycathinone
MDPPP
MDPPP; 3′,4′-Methylenedioxy-α-pyrrolidinopropiophenone
5,6-MDAI
5,6-MDAI; 6,7-Dihydro-5H-indeno[5,6-d][1,3]dioxol-6-amine
6,7-MDAT
6,7-MDAT; 5,6,7,8-Tetrahydronaphtho[2,3-d][1,3]dioxol-6-amine
α-MMDBA
α-MMDBA; 1-(1,3-Benzodioxol-5-yl)ethan-1-amine
MDBP
MDBP; 1-(1,3-Benzodioxol-5-ylmethyl)piperazine
homo-MDA
homo-MDA; 4-(1,3-Benzodioxol-5-yl)butan-2-amine
MDCPA
MDCPA; 2-(1,3-Benzodioxol-5-yl)cyclopropanamine
499
2-(1,3-Benzodioxol-5-yl)-3-methylmorpholine
MDAR
MDAR; 3,4-Methylenedioxyaminorex
1586
1,3-Bis(1,3-benzodioxol-5-yl)propan-2-amine
2563
1-(1,3-Benzodioxol-5-yl)-2-(piperidin-1-yl)propan-1-one
2566
2-(Azepan-1-yl)-1-(1,3-benzodioxol-5-yl)propan-1-one
MDEAR
MDEAR; 5-(1,3-Benzodioxol-5-yl)-4-ethyl-4,5-dihydro-1,3-oxazol-2-amine
Propargylpemoline
Propargylpemoline
10846
2-(Dimethylamino)-5-methyl-5-phenyl-1,3-oxazol-4(5H)-one
ALPHA
ALPHA; 1-Amino-1-(3,4-methylenedioxyphenyl)propane
homo-MDPEA · GAMMA
homo-MDPEA; 1-Amino-3-(3,4-methylenedioxyphenyl)propane
2,3-MDA · ORTHO-MDA
2,3-MDA; 2,3-Methylenedioxyamphetamine
N-Me-MDPEA · METHYL-H
N-Me-MDPEA; N-Methyl-3,4-methylenedixoyphenethylamine
PMA-βk · 4-Methoxycathinone
PMA-βk; 4-Methoxycathinone
Phenibut
Phenibut
α,N-DMMDBA
α,N-DMMDBA; 1-(1,3-Benzodioxol-5-yl)-N-methylethan-1-amine
α,α-DMMDBA
α,α-DMMDBA; 2-(1,3-Benzodioxol-5-yl)propan-2-amine
N,N-DMMDBA
N,N-DMMDBA; N,N-Dimethylpiperonylamine
2,3-MDMPEA
2,3-MDMPEA; 2-(1,3-Benzodioxol-4-yl)-N-methylethan-1-amine
β-Me-MDPEA
β-Me-MDPEA; 2-(1,3-Benzodioxol-5-yl)propan-1-amine
EDPEA
EDPEA; 2-(2,3-Dihydro-1,4-benzodioxin-6-yl)ethan-1-amine
2-HO-5,N-MePEA-βk
2-HO-5,N-MePEA-βk; 1-(2-Hydroxy-5-methylphenyl)-2-(methylamino)ethanone
2-M-5-MePEA-βk
2-M-5-MePEA-βk; 2-Amino-1-(2-methoxy-5-methylphenyl)ethanone
2-Methoxycathinone
2-Methoxycathinone
ADTN
ADTN; 6-Amino-5,6,7,8-tetrahydronaphthalene-2,3-diol
10164
1-[5-(2-Aminoethyl)-2-hydroxyphenyl]ethan-1-one
FLEA
PiHKAL#81 FLEA
MDAL
PiHKAL#101 MDAL
MDBU
PiHKAL#102 MDBU
MDBZ
PiHKAL#103 MDBZ
MDCPM
PiHKAL#104 MDCPM
MDDM
PiHKAL#105 MDDM; SI#80 MDDMA
MDE
PiHKAL#106 MDE; SI#81 MDE
MDHOET
PiHKAL#107 MDHOET
MDIP
PiHKAL#108 MDIP
MDMA
PiHKAL#109 MDMA; SI#82 MDMA
MDMEO
PiHKAL#111 MDMEO
MDMEOET
PiHKAL#112 MDMEOET
MDOH
PiHKAL#114 MDOH; SI#84 MDOH
MDPL
PiHKAL#117 MDPL
MDPR
PiHKAL#118 MDPR; SI#86 MDPR
MDIB
MDIB; 3,4-Methylenedioxy-N-isobutylamphetamine
MDTB
MDTB; 3,4-Methylenedioxy-N-tert-butylamphetamine
MDAM
MDAM; 3,4-Methylenedioxy-N-n-amylamphetamine
MDHE
MDHE; 3,4-Methylenedioxy-N-n-hexylamphetamine
MDOC
MDOC; 3,4-Methylenedioxy-N-n-octylamphetamine
MDDEA · MDDE
MDDEA; 3,4-Methylenedioxy-N,N-diethylamphetamine
MDCM
MDCM; 3,4-Methylenedioxy-N-cyanomethylamphetamine
MDBA
MDBA; 3,4-Methylenedioxy-N-tert-butylaminoamphetamine
MDTFEA
MDTFEA; 3,4-Methylenedixoy-N-(2,2,2-trifluoroethyl)amphetamine
MDMEA
MDMEA; 1-(1,3-Benzodioxol-5-yl)-N-ethyl-N-methylpropan-2-amine
MDMPA
MDMPA; N-[1-(1,3-Benzodioxol-5-yl)propan-2-yl]-N-methylpropan-1-amine
MDMIPA
MDMIPA; 1-(1,3-Benzodioxol-5-yl)-N-methyl-N-(propan-2-yl)propan-2-amine
MDSB
MDSB; N-[1-(1,3-Benzodioxol-5-yl)propan-2-yl]butan-2-amine
N-Formyl-MDMA
N-Formyl-MDMA; N-[1-(1,3-Benzodioxol-5-yl)propan-2-yl]-N-methylformamide
J
PiHKAL#94 J; SI#9 BDB
MDPEA
PiHKAL#115 MDPEA; SI#85 MDPEA
MDPH
PiHKAL#116 MDPH
K
K; 2-Amino-1-(3,4-methylenedioxyphenyl)pentane
L
L; 2-Amino-1-(3,4-methylenedioxyphenyl)hexane
α-Et-MDA
α-Et-MDA; 1-(1,3-Benzodioxol-5-yl)-2-methylbutan-2-amine
α-iPr-MDPEA
α-iPr-MDPEA; 1-(1,3-Benzodioxol-5-yl)-3-methylbutan-2-amine
10797
3-Methyl-3-phenylbutan-2-amine
10741
3-Methyl-3-phenylbutan-2-amine
10606
1-(4-Bromophenyl)-1,1-difluoropropan-2-amine
10605
1,1-Difluoro-1-(4-fluorophenyl)propan-2-amine
10477
N-[2-(2-Chlorophenyl)ethyl]acetamide
10183
3-(2H-1,3-Benzodioxol-5-yl)-3-methylbutan-2-amine
β-HO-MDA
β-HO-MDA; 2-Amino-1-(1,3-benzodioxol-5-yl)propan-1-ol
10060
4-(2-Amino-2-methylpropyl)-N,N,3-trimethylaniline
α-Ethylamphetamine
α-Ethylamphetamine
10579
1-(4-Iodophenyl)-2-methylpropan-2-amine
10568
3-[(4-Fluorophenyl)methyl]-N-methylpentan-3-amine
10567
3-[(4-Fluorophenyl)methyl]pentan-3-amine
10566
1-(4-Fluorophenyl)-N,2-dimethylpropan-2-amine
10565
1-(4-Fluorophenyl)-2-methylpropan-2-amine
α-Methyltyrosine
α-Methyltyrosine
10515
N-Ethyl-2-methyl-1-[3-(trifluoromethyl)phenyl]propan-2-amine
10502
3-[(3-Fluorophenyl)methyl]-N-methylpentan-3-amine
10501
3-[(3-Fluorophenyl)methyl]pentan-3-amine
10500
1-(3-Fluorophenyl)-N,2-dimethylpropan-2-amine
10499
1-(3-Fluorophenyl)-2-methylpropan-2-amine
739
Ethyl (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoate
10055
4-(2-Amino-2-methylpropyl)-3-chloro-N,N-dimethylaniline
MMDA-3a
PiHKAL#134 MMDA-3a; SI#99 MMDA-3a
2T-MMDA-3a
PiHKAL#166 2T-MMDA-3a
2-Me-MDA · 2-Methyl-MDA
2-Me-MDA; 2-Methyl-3,4-methylenedioxyamphetamine
2F-MDA
2F-MDA; 1-(4-Fluoro-1,3-benzodioxol-5-yl)propan-2-amine
3,4-DMA
PiHKAL#55 3,4-DMA; SI#38 DMA
7-Me-MDA · EDA
7-Me-MDA; 1-(2-Methyl-1,3-benzodioxol-5-yl)propan-2-amine
IDA
IDA; 3,4-Isopropylidenedioxyamphetamine
5-APDI
5-APDI; Indanylaminopropane
F2-MDA
F2-MDA; Difluoro-MDA
BF6AP · 6-APDB
BF6AP; 1-(2,3-Dihydro-1-benzofuran-6-yl)propan-2-amine
BF5AP · 5-APDB
BF5AP; 5-(2-Aminopropyl)-2,3-dihydrobenzofuran
NAP · Naphthylaminopropane
NAP; Naphthylaminopropane
6-APT
6-APT; Tetralinylaminopropane
6-APB
6-APB; 6-(2-Aminopropyl)benzofuran
5-APB
5-APB; 5-(2-Aminopropyl)benzofuran
5-API · 5-IT
5-API; 5-(2-Aminopropyl)indole
DHA
DHA; 4-(2-Aminopropyl)benzene-1,2-diol
IBF5AP
IBF5AP; 1-(1,3-Dihydro-2-benzofuran-5-yl)propan-2-amine
EDA
EDA; 3,4-Ethylidenedioxyamphetamine
6-MeO-NAP
6-MeO-NAP; 1-(6-Methoxynaphthalen-2-yl)propan-2-amine
6-EtO-NAP
6-EtO-NAP; 1-(6-Ethoxynaphthalen-2-yl)propan-2-amine
6-PrO-NAP
6-PrO-NAP; 1-(6-Propoxynaphthalen-2-yl)propan-2-amine
6-BuO-NAP
6-BuO-NAP; 1-(6-Butoxynaphthalen-2-yl)propan-2-amine
6-BnO-NAP
6-BnO-NAP; 1-[6-(Benzyloxy)naphthalen-2-yl]propan-2-amine
6-MeS-NAP
6-MeS-NAP; 1-[6-(Methylsulfanyl)naphthalen-2-yl]propan-2-amine
6-IT