Exploring MDA. To explore a different substance…

Names:
MDA
EA-1298
Amphedoxamine
3,4-Methylenedioxyamphetamine
IUPAC names:
1-(2H-1,3-Benzodioxol-5-yl)propan-2-amine
1-(1,3-Benzodioxol-5-yl)propan-2-amine
100 · C10H13NO2 · 179.216
InChI=1S/C10H13NO2/c1-7(11)4-8-2-3-9-10(5-8)13-6-12-9/h2-3,5,7H,4,6,11H2,1H3
NGBBVGZWCFBOGO-UHFFFAOYSA-N This stereoisomer Any stereoisomer

Naranjo, C; Shulgin, AT; Sargent, T. Evaluation of 3,4-methylenedioxyamphetamine (MDA) as an adjunct to psychotherapy. Med. Pharmacol. Exp., 1 Jan 1967, 17 (4), 359–364. 694 kB. https://doi.org/10.1159/000137100

Shulgin, AT. Making MDA, MDEA, MDMA. Ask Dr. Shulgin Online, Center for Cognitive Liberty & Ethics, 15 Mar 2001.

Braun, U; Shulgin, AT; Braun, G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine). J. Pharm. Sci., 1 Jan 1980, 69 (2), 192–195. 513 kB. https://doi.org/10.1002/jps.2600690220

Maurer, HH; Kraemer, T; Springer, D; Staack, RF. Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (Ecstasy), piperazine, and pyrrolidinophenone types. A synopsis. Ther. Drug Monit., 1 Apr 2004, 26 (2), 127–131. 121 kB.

Trachsel, D; Hadorn, M; Baumberger, F. Synthesis of fluoro analogues of 3,4-(methylenedioxy)amphetamine (MDA) and its derivatives. Chem. Biodiv., 23 Mar 2006, 3 (3), 326–336. 106 kB. https://doi.org/10.1002/cbdv.200690035

Roman, DL; Saldaña, SN; Nichols, DE; Carroll, FI; Barker, EL. Distinct molecular recognition of psychostimulants by human and Drosophila serotonin transporters. J. Pharmacol. Exp. Ther., 1 Jan 2004, 308 (2), 679–687. 519 kB. https://doi.org/10.1124/jpet.103.057836

Ray, TS. Psychedelics and the human receptorome. PLOS ONE, 2 Feb 2010, 5 (2), e9019. 791 kB. https://doi.org/10.1371/journal.pone.0009019

Dal Cason, TA. An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs. J. Forensic Sci., 1 May 1990, 35 (3), 675–697. 2.2 MB. https://doi.org/10.1520/JFS12874J

Trachsel, D. Fluorine in psychedelic phenethylamines. Drug Test. Analysis, 1 Jul 2012, 4 (7-8), 577-590. 1.0 MB. https://doi.org/10.1002/dta.413

Scorza, M; Carrau, C; Silveira, R; Zapata-Torres, G; Cassels, BK; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives. Biochem. Pharmacol., 15 Dec 1997, 54 (12), 1361–1369. 697 kB. https://doi.org/10.1016/S0006-2952(97)00405-X #31

Stone, DM; Johnson, M; Hanson, GR; Gibb, JW. A comparison of the neurotoxic potential of methylenedioxyamphetamine (MDA) and its N-methylated and N-ethylated derivatives. Eur. J. Pharmacol., 10 Feb 1987, 134 (2), 245–248. 316 kB. https://doi.org/10.1016/0014-2999(87)90173-7

Johnson, MP; Hoffman, AJ; Nichols, DE. Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur. J. Pharmacol., 16 Dec 1986, 132 (2–3), 269–276. 559 kB. https://doi.org/10.1016/0014-2999(86)90615-1

Baumgarten, HG; Lachenmayer, L. Serotonin neurotoxins—past and present. Neurotox. Res., 1 Jan 2004, 6 (7–8), 589–614. 402 kB. https://doi.org/10.1007/BF03033455

de la Torre, R; Farré, M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol. Sci., 1 Oct 2004, 25 (10), 505–508. 104 kB. https://doi.org/10.1016/j.tips.2004.08.001

Świst, M; Wilamowski, J; Zuba, D; Kochana, J; Parczewski, A. Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA. Forensic Sci. Int., 10 May 2005, 149 (2–3), 181–192. 594 kB. https://doi.org/10.1016/j.forsciint.2004.06.016

Shulgin, AT; Sargent, T; Naranjo, C. The chemistry and psychopharmacology of nutmeg and of several related phenylisopropylamines. In Ethnopharmacologic Search for Psychoactive Drugs; Efron, DH; Holmstedt, B; Kline, NS, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 28 Jan 1967; pp 202–215. 951 kB.

Shulgin, AT; Sargent, T; Naranjo, C. Structure-activity relationships of one-ring psychotomimetics. Nature, 1 Jan 1969, 221, 537–541. 537 kB. https://doi.org/10.1038/221537a0

Shulgin, AT. Chemistry and structure-activity relationships of the psychotomimetics. In Psychotomimetic Drugs; Efron, DH, Ed., Raven Press, New York, 1970; pp 21–41. 8.6 MB.

White, TJ; Goodman, D; Shulgin, AT; Castagnoli, N; Lee, R; Petrakis, NL. Mutagenic activity of some centrally active aromatic amines in Salmonella typhimurium. Mutat. Res., 1 Jan 1977, 56 (2), 199–202. 256 kB. https://doi.org/10.1016/0027-5107(77)90210-X

Anderson, GM; Braun, G; Braun, U; Nichols, DE; Shulgin, AT. Absolute configuration and psychotomimetic activity. In QuaSAR: Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens. NIDA Research Monograph 22; Barnett, G; Trsic, M; Willette, RE, Eds., U.S. Department of Health and Human Services, National Institute of Health, U.S. Government Printing Office, Washington, DC, 1978; pp 8–15. 457 kB.

Braun, U; Shulgin, AT; Braun, G. Prüfung auf zentrale Aktivität und Analgesia von N-substituierten Analogen des Amphetamin-Derivates 3,4-Methylendioxyphenylisopropylamin. Arzneim. Forsch., 1 Jan 1980, 30 (5), 825–830. 1.5 MB.

Domelsmith, LN; Eaton, TA; Houk, KN; Anderson, GM; Glennon, RA; Shulgin, AT; Castagnoli, N; Kollman, PA. Photoelectron spectra of psychotropic drugs. 6. Relationships between physical properties and pharmacological actions of amphetamine analogues. J. Med. Chem., 1 Jan 1981, 24 (12), 1414–1421. 963 kB. https://doi.org/10.1021/jm00144a009

Shulgin, AT; Jacob, P. Potential misrepresentation of 3,4-methylene-dioxyamphetamine (MDA). A toxicological warning. J. Anal. Toxicol., 1 Jan 1982, 6 (2), 71–75. 5.6 MB. https://doi.org/10.1093/jat/6.2.71

Lemaire, D; Jacob, P; Shulgin, AT. Ring substituted beta-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol., 1 Jan 1985, 37 (8), 575–7. 1.8 MB. https://doi.org/10.1111/j.2042-7158.1985.tb03072.x

Nichols, DE; Hoffman, AJ; Oberlender, RA; Jacob, P; Shulgin, AT. Derivatives of 1-(1,3-benzodioxol-5-yl)-2-butanamine: Representatives of a novel therapeutic class. J. Med. Chem., 1 Jan 1986, 29 (10), 2009–2015. 1.0 MB. https://doi.org/10.1021/jm00160a035

McKenna, DJ; Guan, AM; Shulgin, AT. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine. Pharmacol. Biochem. Behav., 1 Jan 1991, 38 (3), 505–12. 783 kB. https://doi.org/10.1016/0091-3057(91)90005-M

Nichols, DE; Lloyd, DH; Hoffman, AJ; Nichols, MB; Yim, GKW. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]-serotonin from rat brain synaptosomes. J. Med. Chem., 1 Jan 1982, 25 (5), 530–535. 804 kB. https://doi.org/10.1021/jm00347a010

Nichols, DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: Entactogens. J. Psychoactive Drugs, 1 Jan 1986, 18 (4), 305–313. 10.7 MB. https://doi.org/10.1080/02791072.1986.10472362

Nichols, DE; Oberlender, R; Burris, K; Hoffman, AJ; Johnson, MP. Studies of dioxole ring substituted 3,4-methylenedioxyamphetamine (MDA) analogues. Pharmacol. Biochem. Behav., 1 Jan 1989, 34 (3), 571–576. 680 kB. https://doi.org/10.1016/0091-3057(89)90560-1

Johnson, MP; Conarty, PF; Nichols, DE. [3H]Monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 9–16. 1.1 MB. https://doi.org/10.1016/0014-2999(91)90659-E

Nash, JF; Nichols, DE. Microdialysis studies on 3,4-methylenedioxyamphetamine and structurally related analogues. Eur. J. Pharmacol., 1 Jan 1991, 200 (1), 53–58. 714 kB. https://doi.org/10.1016/0014-2999(91)90664-C

Cozzi, NV. Pharmacological studies of some psychoactive phenylalkylamines: entactogens, hallucinogens, and anorectics. Ph. D. Thesis, University Of Wisconsin-Madison, 1 Jan 1994. 10.6 MB.

Thiessen, PN; Cook, DA. The properties of 3,4-methylenedioxyamphetamine (MDA). I. A review of the literature. Clin. Toxicol., 1973, 6 (1), 45–52. 367 kB. https://doi.org/10.3109/15563657308991042

Guy, M; Freeman, S; Alder, JF; Brandt, SD. The Henry reaction: spectroscopic studies of nitrile and hydroxylamine by-products formed during synthesis of psychoactive phenylalkylamines. Cent. Eur. J. Chem., 1 Dec 2008, 6 (4), 526–534. 982 kB. https://doi.org/10.2478/s11532-008-0054-z

Benzenhõfer, U; Passie, T. Rediscovering MDMA (ecstasy): the role of the American chemist Alexander T. Shulgin. Addiction, 1 Aug 2010, 105 (8), 1355–1361. 794 kB. https://doi.org/10.1111/j.1360-0443.2010.02948.x

Pentney, AR. An exploration of the history and controversies surrounding MDMA and MDA. J. Psychoactive Drugs, 1 Jul 2001, 33 (3), 213–221. 871 kB. https://doi.org/10.1080/02791072.2001.10400568

Schmidt, WJ; Mayerhofer, A; Meyer, A; Kovar, K. Ecstasy counteracts catalepsy in rats, an anti-parkinsonian effect? Neurosci. Lett., 27 Sep 2002, 330 (3), 251–254. 280 kB. https://doi.org/10.1016/S0304-3940(02)00823-6

Glennon, RA; Yousif, M; Patrick, G. Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol. Biochem. Behav., 1 Mar 1988, 29 (3), 443–449. 551 kB. https://doi.org/10.1016/0091-3057(88)90001-9

Glennon, RA; Young, R. MDA: An agent that produces stimulus effects similar to those of 3,4-DMA, LSD and cocaine. Eur. J. Pharmacol., 23 Mar 1984, 99 (2–3), 249–250. 139 kB. https://doi.org/10.1016/0014-2999(84)90250-4

Oberlender, R; Nichols, DE. (+)-N-Methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine as a discriminative stimulus in studies of 3,4-methylenedioxymethamphetamine-like behavioral activity. J. Pharmacol. Exp. Ther., 1 Dec 1990, 255 (3), 1098–1106. 1.9 MB.

Glennon, RA; Raghupathi, R; Bartyzel, P; Teitler, M; Leonhardt, S. Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J. Med. Chem., 1 Feb 1992, 35 (4), 734–740. 1.1 MB. https://doi.org/10.1021/jm00082a014

Altun, A; Golcuk, K; Kumru, M; Jalbout, AF. Electron-conformation study for the structure-hallucinogenic activity relationships of phenylalkylamines. Bioorg. Med. Chem., 1 Dec 2003, 11 (24), 3861–3868. 577 kB. https://doi.org/10.1016/S0968-0896(03)00437-1

Schulze-Alexandru, M; Kovar, K; Vedani, A. Quasi-atomistic receptor surrogates for the 5-HT2A receptor: A 3D-QSAR study on hallucinogenic substances. Quant. Struct.-Act. Relat., 1 Dec 1999, 18 (6), 548–560. 312 kB. https://doi.org/10.1002/(SICI)1521-3838(199912)18:6<548::AID-QSAR548>3.0.CO;2-B

Glennon, RA; Liebowitz, SM; Anderson, GM. Serotonin receptor affinities of psychoactive phenalkylamine analogues. J. Med. Chem., 1 Mar 1980, 23 (3), 294–299. 844 kB. https://doi.org/10.1021/jm00177a017

Toole, KE; Fu, S; Shimmon, RG; Kraymen, M; Taflaga, S. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J., 2012, 9 (1), 27–32. 496 kB.

Nakanishi, K; Miki, A; Zaitsu, K; Kamata, H; Shima, N; Kamata, T; Katagi, M; Tatsuno, M; Tsuchihashi, H; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View™, and the Emit® assays for use in drug enforcement. Forensic Sci. Int., 10 Apr 2012, 217 (1–3), 174–181. 397 kB. https://doi.org/10.1016/j.forsciint.2011.11.003

Baggott, MJ; Siegrist, JD; Galloway, GP; Robertson, LC; Coyle, JR; Mendelson, JE. Investigating the mechanisms of hallucinogen-induced visions using 3,4-methylenedioxyamphetamine (MDA): A randomized controlled trial in humans. PLOS ONE, 2 Dec 2010, 5 (12). 1.4 MB. https://doi.org/10.1371/journal.pone.0014074

Reviriego, F; Navarro, P; Domènech, A; García-España, E. Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. J. Chem. Soc. Perkin Trans. 2, 2002, 1634–1638. 115 kB. https://doi.org/10.1039/b200607c

Vohlken, BA; Layton, SM. Instrumental separation of 3,4-methylenedioxyamphetamine (MDA) from 1-(3,4- methylenedioxyphenyl)-2-propanol, a co-eluting compound. Microgram J., 1 Jan 2003, 1 (1–2), 32–36. 208 kB.

Krawczeniuk, AS. Identification of phenethylamines and methylenedioxyamphetamines using liquid chromatography atmospheric pressure electrospray ionization mass spectrometry. Microgram J., 1 Jan 2005, 3 (1–2), 78–100. 979 kB.

Ho, B; McIsaac, WM; An, R; Tansey, LW; Walker, KE; Englert, LF; Noel, MB. Analogs of α-methylphenethylamine (amphetamine). I. Synthesis and pharmacological activity of some methoxy and/or methyl analogs. J. Med. Chem., 1 Jan 1970, 13 (1), 26–30. 601 kB. https://doi.org/10.1021/jm00295a007

Glennon, RA; Young, R. MDA: A psychoactive agent with dual stimulus effects. Life Sci., 23 Jan 1984, 34 (4), 379–383. 283 kB. https://doi.org/10.1016/0024-3205(84)90627-1

Shulgin, AT. Psychotomimetic drugs: structure-activity relationships. In Handbook of Psychopharmacology: Stimulants; Iversen, LL; Iversen, SD; Snyder, SH, Eds., Plenum Press, New York, 1978; Vol. 11, pp 243–333. 2.6 MB. https://doi.org/10.1007/978-1-4757-0510-2_6 Rhodium.

Thakur, M; Thakur, A; Khadikar, PV. QSAR studies on psychotomimetic phenylalkylamines. Bioorg. Med. Chem., 15 Feb 2004, 12 (4), 825–831. 323 kB. https://doi.org/10.1016/j.bmc.2003.10.027

Glennon, RA; Rosecrans, JA; Young, R. Behavioral properties of psychoactive phenylisopropylamines in rats. Eur. J. Pharmacol., 17 Dec 1981, 76 (4), 353–360. 964 kB. https://doi.org/10.1016/0014-2999(81)90106-0

Jackson, B; Reed, A. Another abusable amphetamine. JAMA, 2 Feb 1970, 211 (5), 830–830. 186 kB. https://doi.org/10.1001/jama.1970.03170050064024

Hardman, HF; Haavik, CO; Seevers, MH. Relationship of the structure of mescaline and seven analogs to toxicity and behavior in five species of laboratory animals. Toxicol. Appl. Pharmacol., 1 Jun 1973, 25 (2), 299–309. 751 kB. https://doi.org/10.1016/S0041-008X(73)80016-X

Ziporyn, T. A growing industry and menace: makeshift laboratory’s designer drugs. JAMA, 12 Dec 1986, 256 (22), 3061–3063. 486 kB. https://doi.org/10.1001/jama.1986.03380220011003

Passie, T; Benzenhöfer, U. The history of MDMA as an underground drug in the United States, 1960–1979. J. Psychoactive Drugs, 14 Mar 2016, 48 (2), 67–75. 1.0 MB. https://doi.org/10.1080/02791072.2015.1128580

Bernschneider-Reif, S; Öxler, F; Freudenmann, RW. The origin of MDMA (“Ecstasy”) – Separating the facts from the myth. Pharmazie, 1 Nov 2006, 61 (11), 966–972. 315 kB.

NIMH. MDA. National Clearinghouse for Drug Abuse Information Report Series, Oct 1973, 25 (1), 9. 251 kB.

Sreenivasan, V. Problems in Identification of Methylenedioxy and Methoxy Amphetamines. J. Crim. Law Criminol., 1 Jan 1972, 63 (2), 304. 996 kB.

Eichmeier, LS; Caplis, ME. The forensic chemist. An “analytical detective”. Anal. Chem., Aug 1975, 47 (9), 841A–844a. 1.6 MB. https://doi.org/10.1021/ac60359a050

Meyers, FH; Rose, AJ; Smith, DE. Incidents involving the Haight-Ashbury population and some uncommonly used drugs. J. Psychedelic Drugs, 1 Apr 1968, 1 (2), 139–146. 842 kB. https://doi.org/10.1080/02791072.1968.10524531

Weil, AT. The Love Drug. J. Psychedelic Drugs, 1 Oct 1976, 8 (4), 335–337. 1.3 MB. https://doi.org/10.1080/02791072.1976.10471861

Yensen, R; Leo, FBD; Rhead, JC; Richards, WA; Soskin, RA; Turek, B; Kurland, AA. MDA-assisted psychotherapy with neurotic outpatients: a pilot study. J. Nerv. Ment. Dis., Oct 1976, 163 (4), 233–245. 893 kB. https://doi.org/10.1097/00005053-197610000-00002

Turek, IS; Soskin, RA; Kurland, AA. Methylenedioxyamphetamine (MDA)–Subjective Effects. J. Psychedelic Drugs, 1 Jan 1974, 6 (1), 7–14. 3.9 MB. https://doi.org/10.1080/02791072.1974.10471499

Smith, DE. The psychotomimetic amphetamines with special reference to DOM (STP) toxicity. J. Psychedelic Drugs, 1 Apr 1969, 2 (2), 37–41. 709 kB. https://doi.org/10.1080/02791072.1969.10524413

Friedhoff, AJ; Lynn, FA; Rosenblatt, G; Holden, A. Preliminary study of a new anti-depressant drug. J. Nerv. Ment. Dis., Aug 1958, 127 (2), 185–190. 481 kB. https://doi.org/10.1097/00005053-195808000-00011

Glennon, RA. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention. Advances in Pharmacology, 2014, 69, 581–620. 564 kB. https://doi.org/10.1016/B978-0-12-420118-7.00015-9

Passie, T; Benzenhöfer, U. MDA, MDMA and other mescaline-like substances in the US military’s search for a truth drug (1940s to 1960s). Drug Test. Analysis, 31 Aug 2017, 10 (1), 72-80. 206 kB. https://doi.org/10.1002/dta.2292

Ogino, M; Naiki, T; Orui, H; Kosone, K; Yamazaki, M. Study of method for identifying phenethylamine drugs. JCCL, , 50, 63-82. 627 kB. Retrieved from http://www.customs.go.jp/ccl_search/e_info_search/drugs/r_50_08_e.pdf

Clark, CR. Synthesis and analytical profiles for regioisomeric and isobaric amines related to MDMA, MDEA and MBDB: Differentiation of drug and non-drug substances of mass spectral equivalence, US DOJ, 1 Oct 2011. 3.9 MB. #MDA

Brimblecombe, RW; Pinder, RM. Hallucinogenic agents, Wright-Scientechnica, Bristol, UK, 1 Jan 1975. 46.2 MB.

Zhang, S; Fan, Y; Shi, Z; Cheng, S. DFT-based QSAR and action mechanism of phenylalkylamine and tryptamine hallucinogens. Chin. J. Chem., 1 Apr 2011, 29 (4), 623–630. 166 kB. https://doi.org/10.1002/cjoc.201190132 #27

Dal Cason, TA; Meyers, JA; Lankin, DC. Proton and carbon-13 NMR assignments of 3,4-methylenedioxyamphetamine (MDA) and some analogues of MDA. Forensic Sci. Int., 18 Apr 1997, 86 (1–2), 15-24. 931 kB. https://doi.org/10.1016/S0379-0738(97)02102-6

Burns, DT; Lewis, RJ; Stevenson, P. Determination of 3,4-methylenedioxyamphetamine analogues (“ecstasy”) by proton nuclear magnetic resonance spectrometry. Anal. Chim. Acta., 10 Mar 1997, 339 (3), 259-263. 405 kB. https://doi.org/10.1016/S0003-2670(96)00485-0

Halberstadt, AL; Geyer, MA. Effect of hallucinogens on unconditioned behavior. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, AL; Vollenweider, FX; Nichols, DE, Eds., Springer, 1 Jan 2017; pp 159-199. 652 kB. https://doi.org/10.1007/7854_2016_466

King, LA. New phenethylamines in Europe. Drug Test. Analysis, 1 Jul 2014, 6 (7-8), 808-818. 472 kB. https://doi.org/10.1002/dta.1570

Neudõrffer, A; Mueller, M; Martinez, C; Mechan, A; McCann, U; Ricaurte, GA; Largeron, M. Synthesis and neurotoxicity profile of 2,4,5-trihydroxymethamphetamine and its 6-(N-acetylcystein-S-yl) conjugate. Chem. Res. Toxicol., 2011, 24 (6), 968–278. 4.8 MB. https://doi.org/10.1021/tx2001459

Titeler, M; Lyon, RA; Glennon, RA. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology, 1 Feb 1988, 94 (2), 213–216. 431 kB. https://doi.org/10.1007/BF00176847 #15,16

Cassels, BK; Sáez-Briones, P. Dark classics in chemical neuroscience: Mescaline. ACS Chemical Neuroscience, 8 Jun 2018, n/a. 424 kB. https://doi.org/10.1021/acschemneuro.8b00215

ALPHA
homo-MDPEA · GAMMA
2,3-MDA · ORTHO-MDA
MDMPEA
Salsolinol
PMA-βk · 4-Methoxycathinone
Phenibut
α,N-DMMDBA
α,α-DMMDBA
N,N-DMMDBA
2,3-MDMPEA
β-Me-MDPEA
EDPEA
2-HO-5,N-MePEA-βk
2-M-5-MePEA-βk
2-Methoxycathinone
ADTN
SKF-39315
Longimammamine
Salsoline
10164
4-HO-MC · 4-Hydroxymethcathinone
9569
Norhydroxytolyl-mephedrone
24 June 2018 · Creative Commons BY-NC-SA ·